Publications

Soft engineering vs. a dynamic approach in coastal dune management: a case study on the North Sea barrier island of Ameland, the Netherlands

Jong, B. de; Keijsers, J.G.S.; Riksen, M.J.P.M.; Krol, J.; Slim, P.A.

Summary

Dunes act as flood defences in coastal zones, protecting low-lying interior lands from flooding. To ensure coastal safety, insight is needed on how dunes develop under different types of management. The current study focuses on two types of coastal dune management: (1) a “soft engineering” approach, in which sand fences are placed on the seaward side of foredunes, and (2) “dynamic coastal management,” with minimal or no dune maintenance. The effects of these management styles on dune formation are examined for two adjacent coastal sections of the North Sea barrier island of Ameland, The Netherlands, where dynamic coastal management was introduced in 1995 and 1999, respectively.
Dunes act as flood defenses in coastal zones, protecting low-lying interior lands from flooding. To ensure coastal safety, insight is needed on how dunes develop under different types of management. The current study focuses on two types of coastal dune management: (1) a "soft engineering" approach, in which sand fences are placed on the seaward side of foredunes, and (2) "dynamic coastal management," with minimal or no dune maintenance. The effects of these management styles on dune formation are examined for two adjacent coastal sections of the North Sea barrier island of Ameland, The Netherlands, where dynamic coastal management was introduced in 1995 and 1999, respectively. For each section, we analyzed cross-shore profile data from 1980 until 2010, deriving dune foot position, crest position, crest height, and foredune volume for each year and analyzing the situation before and after the change in management. We further assessed the effect of the management regime on dune vegetation. Other factors that could influence dune development were also taken into account, such as beach width and shape, water levels, wave heights, and nourishments. Results show that implementation of dynamic coastal management did not directly affect the volume of the foredune. Growth was occasionally interrupted, coinciding with high-water events. In periods between erosive storms, dune growth rates did not show a significant difference between management types (p = 0.09 and 0.32 for sections 1 and 2, respectively). The main effect of the change was on vegetation development. Dynamic coastal management, therefore, did not reduce coastal safety.