Publications

Effects of dry period length and dietary energy source on metabolic status and hepatic gene expression of dairy cows in early lactation

Chen, J.C.; Gross, J.J.; Dorland, H.A. van; Remmelink, G.J.; Bruckmaier, R.M.; Kemp, B.; Knegsel, A.T.M. van

Summary

In a prior study, we observed that cows with a 0-d dry period had greater energy balance and lower milk production compared with cows with a 30- or 60-d dry period in early lactation. The objective of the current study was to evaluate the influence of dry period length on metabolic status and hepatic gene expression in cows fed a lipogenic or glucogenic diet in early lactation. Holstein-Friesian dairy cows (n = 167) were assigned randomly to 3 × 2 factorial design with 3 dry period lengths (n = 56, 55, and 56 for 0-, 30-, and 60-d dry, respectively) and 2 early lactation diets (n = 84 and 83 for glucogenic and lipogenic diet, respectively). Cows were fed a glucogenic or lipogenic diet from 10 d before the expected calving date and onward. The main ingredient for a glucogenic concentrate was corn, and the main ingredients for a lipogenic concentrate were sugar beet pulp, palm kernel, and rumen-protected palm oil. Blood was sampled weekly from 95 cows from wk 3 precalving to wk 8 postcalving. Liver samples were collected from 76 cows in wk -2, 2, and 4 relative to calving. Liver samples were analyzed for triacylglycerol concentrations and mRNA expression of 12 candidate genes. Precalving, cows with a 0-d dry period had greater plasma ß-hydroxybutyrate, urea, and insulin concentrations compared with cows with a 30- or 60-d dry period. Postcalving, cows with a 0-d dry period had lower liver triacylglycerol and plasma nonesterified fatty acids concentrations (0.20, 0.32, and 0.36 mmol/L for 0-, 30-, and 60-d dry period, respectively), greater plasma glucose, insulin-like growth factor-I, and insulin (24.38, 14.02, and 11.08 µIU/mL for 0-, 30-, and 60-d dry period, respectively) concentrations, and lower hepatic mRNA expression of pyruvate carboxylase, compared with cows with a 30- or 60-d dry period. Plasma urea and ß-hydroxybutyrate concentrations were greater in cows fed a lipogenic diet compared with cows fed a glucogenic diet. In conclusion, cows with a 0-d dry period had an improved metabolic status in early lactation, indicated by lower plasma concentrations of nonesterified fatty acids, greater plasma concentrations of glucose, insulin-like growth factor-I, and insulin, and lower mRNA expression of pyruvate carboxylase in the liver, compared with cows with a 30- or 60-d dry period. Independent of dry period length, the glucogenic diet also improved the metabolic status compared with the lipogenic diet.