White-Sand Savannas Expand at the Core of the Amazon After Forest Wildfires

Flores, Bernardo M.; Holmgren, Milena


Across the tropics, climate change is increasing the frequency and severity of wildfires, exposing tropical forests to the risk of shifting into an open vegetation state. A recent satellite analysis of the Amazon basin suggests this might happen first in floodplains where forests are particularly fragile. We studied floodplain landscapes of the middle Rio Negro, covering ~ 4100 km2 at the Central Amazon region, where forest ecosystems are dominant. We used Landsat images to map 40 years of wildfire history and test the hypothesis that repeatedly burnt forests fail to regenerate and can be replaced by white-sand savanna ecosystems. In the field, using a chronosequence of ‘time after the first fire’, we assessed changes in tree species composition, herbaceous cover and topsoil properties. Here we show that when these forests are repeatedly disturbed by wildfires, their soil gradually loses clay and nutrients and becomes increasingly sandy. In synchrony, native herbaceous cover expands, forest tree species disappear and white-sand savanna tree species become dominant. This drastic ecosystem shift happened within 40 years, likely accelerated by topsoil erosion. When recurrent fires maintain floodplain forests in an open vegetation state, topsoil erosion intensifies, transforming clay-rich soils into white-sand soils that may favour savanna tree species. Our findings reveal that white-sand savannas may expand through seasonally flooded ecosystems at the core of the Amazon, facilitated by wildfires.