Oligosaccharide synthesis by the hyperthermostable b-glucosidase from Pyrococcus furiosus: kinetics and modelling

Bruins, M.E.; Strubel, M.; Lieshout, J.F.T. van; Janssen, A.E.M.; Boom, R.M.


Oligosaccharides can be synthesised from monosaccharides or disaccharides, using glycosidases as a catalyst. To investigate the potential of this synthesis with beta-glycosidase from Pyrococcus furiosus we determined kinetic parameters for substrate conversion and product formation from cellobiose, lactose, glucose and galactose. The obtained parameters for initial rate measurements of disaccharide conversion were also used for the interpretation of experiments in time. The model for cellobiose gave a good description of the experiments. The enzyme was found to be uncompetitively inhibited by cellobiose and competitively inhibited by glucose. Lactose conversion however, could not be modelled satisfactorily; apparently additional reactions take place. Monosaccharide condensation also yielded oligosaccharides, but much slower. The use of a hyperthermostable, enzyme was found to be positive. More substrate could be dissolved at higher temperatures, which benefited all reactions.