Overview on legislation and scientific approaches for risk assessment of combined exposure to multiple chemicals: the potential EuroMix contribution

Rotter, S.; Beronius, A.; Boobis, A.R.; Hanberg, A.; Klaveren, J. Van; Luijten, M.; Machera, K.; Nikolopoulou, D.; Voet, H. Van Der; Zilliacus, J.; Solecki, R.


This article reviews the current legislative requirements for risk assessment of combined exposure to multiple chemicals via multiple exposure routes, focusing on human health and particularly on food-related chemicals. The aim is to identify regulatory needs and current approaches for this type of risk assessment as well as challenges of the implementation of appropriate and harmonized guidance at international level. It provides an overview of the current legal requirements in the European Union (EU), the United States and Canada. Substantial differences were identified in the legal requirements for risk assessment of combined exposure to multiple chemicals and its implementation between EU and non-EU countries and across several regulatory sectors. Frameworks currently proposed and in use for assessing risks from combined exposure to multiple chemicals via multiple routes and different durations of exposure are summarized. In order to avoid significant discrepancies between regulatory sectors or countries, the approach for assessing risks of combined exposure should be based on similar principles for all types of chemicals. OECD and EFSA identified the development of harmonized methodologies for combined exposure to multiple chemicals as a key priority area. The Horizon 2020 project “EuroMix” aims to contribute to the further development of internationally harmonized approaches for such risk assessments by the development of an integrated test strategy using in vitro and in silico tests verified for chemical mixtures based on more appropriate data on potential combined effects. These approaches and testing strategies should be integrated in a scientifically based weight of evidence approach to account for complexity and uncertainty, to improve risk assessment.