Skip to content

Molecular regulation of lipid metabolism

Our work focuses on understanding how molecules control fat metabolism in the liver and fat tissue during fasting and eating.

Throughout human history, one of the greatest threats to the survival of our ancestors were the long periods with little to no food. As a consequence, starvation has been a key evolutionary pressure shaping human energy metabolism. The intricate architecture of human energy metabolism undoubtedly served our ancestors well, allowing them to survive long periods of starvation. In the modern world of caloric excess, however, the mechanisms that once helped humans to survive starvation now contribute to the unprecedented growth in obesity and related metabolic diseases. Deeper understanding of the underlying principles and mechanisms driving the adaptive response to fasting will be valuable in the design of new therapeutic strategies for metabolic diseases.

Two organs that play a central role in the metabolic response to fasting are adipose tissue and the liver. The adipose tissue is the body’s energy depot and releases fatty acids to be used as fuel by other tissues. The liver serves as a true metabolic hub during fasting and is the recipient of a major share of the fatty acids released by the adipose tissue.

Aim and approach

Overall, our work is concentrated on elucidating the molecular mechanism that underlie the regulation of lipid metabolism in liver and adipose tissue during fasting and feeding. In the past, we demonstrated the importance of the transcription factor PPARα in the metabolic response to fasting in the liver. Using various human liver model systems in combination with transcriptomics, our work also revealed the importance of PPARα in gene regulation and nutrient metabolism in human liver. In addition, my team elucidated the mechanism responsible for the regulation of fat uptake into adipose tissue during fasting. Specifically, we discovered the protein ANGPTL4 and elucidated its role as a crucial regulator of lipid uptake into adipose tissue by interfering with the function of lipoprotein lipase.

Research topics

Topics

Contact us