Publications

On the stability and finite-size effects of a columnar phase in single-component systems of hard-rod-like particles

Dussi, Simone; Chiappini, Massimiliano; Dijkstra, Marjolein

Summary

Colloidal rod-like particles self-assemble into a variety of liquid crystal phases. In contrast to the formation of the nematic and smectic phases for which it is well understood that it can be driven by entropy, the stabilisation mechanism of a prolate columnar phase ((Formula presented.)), observed for example in fd-virus suspensions, is still unclear. Here, we investigate whether or not a (Formula presented.) phase can exist in a purely entropy-driven single-component system. We perform computer simulations of hard particles with different shapes: spherocylinders, top-shaped rods, cuboidal particles, and crooked rods. We show that the (Formula presented.) phases observed in previous simulation studies are mere artefacts due to either finite-size effects or simulation boxes that are incommensurate with the stable thermodynamic phase. In particular, we observe that the characteristic layering of the stable smectic or crystal phase disappears when the dimension of the simulation box along the direction of the layers is too small. Such a system-size effect depends both on particle shape and the competing phases, and appears to be more pronounced for less anisotropic particles.