Publications

Increased hippuric acid content of urine can reduce soil N2O fluxes

Kool, D.M.; Hoffland, E.; Hummelink, E.W.J.; van Groenigen, J.W.

Summary

Urine patches in grazed pastures are a major source of nitrous oxide (N2O) emission. It is well-documented that the relative concentration of the various nitrogenous urine constituents varies significantly with diet. The effect of these variations on NO emissions from urine patches, however, has never been reported. The aim of this study was to test whether variations in urine composition, consistent with different diets, lead to significant differences in N2O emission. Four varieties of artificial urine, all with similar total N concentrations, but varying in the relative contribution of the nitrogenous constituents, were applied to undisturbed cores from a sandy pasture soil. N2O fluxes were monitored for 65 days at two moisture treatments; 92% WFPS for the entire incubation, and 70% WFPS up to day 41 and 92% afterwards. Extra replicates were included for destructive analysis on mineral N concentrations and pH. Urine composition was a significant (P <0.001) factor determining N2O emissions. An increase in the relative hippuric acid concentration from 3 to 9% of total N resulted in a significant decline in average N2O fluxes, from 16.4 to 8.7 mu g N2O-N h(-1) kg(-1) soil (averaged over all treatments). Cumulative emission decreased from 8.4 to 4.4% of the applied urine-N (P <0.0 1). Soil mineral N showed a modest but significant decrease with an increase of hippuric acid content. pH did not show any significant relationship with urine composition. Increasing the urea concentration with 12% of applied urinary N did not significantly affect N2O emissions. Moisture content significantly affected N2O emissions (P <0.001), but no interaction between moisture and urine composition was found. As the inhibitory effect of hippuric acid could not be linked directly to mineral N concentrations in the soil, we hypothesize that the breakdown product benzoic acid either inhibits denitrification or decreases the N2O/N-2 ratio. We conclude that hippuric acid concentration in urine is an important factor influencing N2O emission, with a potential for reducing emissions with 50%. We suggest alternative rationing leading to higher hippuric acid concentrations in urine as a possible strategy to mitigate N2O emission from grazed pastures. (c) 2005 Elsevier Ltd. All fights reserved.