Publicaties

Exposure risk to rural Residents : Insights into particulate and gas phase pesticides in the Indoor-Outdoor nexus

Mu, Hongyu; Yang, Xiaomei; Wang, Kai; Osman, Rima; Xu, Wen; Liu, Xuejun; Ritsema, Coen J.; Geissen, Violette

Samenvatting

Rural residents are exposed to both particulate and gaseous pesticides in the indoor-outdoor nexus in their daily routine. However, previous personal exposure assessment mostly focuses on single aspects of the exposure, such as indoor or gaseous exposure, leading to severe cognition bias to evaluate the exposure risks. In this study, residential dust and silicone wristbands (including stationary and personal wearing ones) were used to screen pesticides in different phases and unfold the hidden characteristics of personal exposure via indoor-outdoor nexus in intensive agricultural area. Mento-Carlo Simulation was performed to assess the probabilistic exposure risk by transforming adsorbed pesticides from wristbands into air concentration, which explores a new approach to integrate particulate (dust) and gaseous (silicone wristbands) pesticide exposures in indoor and outdoor environment. The results showed that particulate pesticides were more concentrated in indoor, whereas significantly higher concentrations were detected in stationary outdoor wristbands (p < 0.05). Carbendazim and chlorpyrifos were the most frequently detected pesticides in dust and stationary wristbands. Higher pesticide concentration was found in personal wristbands worn by farmers, with the maximum value of 2048 ng g−1 for difenoconazole. Based on the probabilistic risk assessment, around 7.1 % of farmers and 2.6 % of bystanders in local populations were potentially suffering from chronic health issues. One third of pesticide exposures originated mainly from occupational sources while the rest derived from remoting dissipation. Unexpectedly, 43 % of bystanders suffered the same levels of exposure as farmers under the co-existence of occupational and non-occupational exposures. Differed compositions of pesticides were found between environmental samples and personal pesticide exposure patterns, highlighting the need for holistic personal exposure measurements.