Publications

Retention soil filters for the treatment of sewage treatment plant effluent and combined sewer overflow

Brunsch, Andrea F.; Zubieta Florez, Pedro; Langenhoff, Alette A.M.; Laak, Thomas L. ter; Rijnaarts, Huub H.M.

Summary

Retention soil filters (RSFs) are vertical flow constructed wetlands. They are mainly used for the treatment of combined sewer overflow or stormwater, and not operated during dry weather conditions. However, RSFs have been successfully tested as continuous post treatment for sewage treatment plant effluents. In this paper we present a new approach, namely dual usage of the retention soil filter. During dry weather the RSF is used for the polishing treatment of sewage treatment plant effluent and during overflow events, the retention soil filter treats the combined sewer overflow. This study was conducted at two pilot RSFs that were fed with sewage treatment effluent for four years. Removal of TOC, DOC, nutrients and 21 organic micropollutants was determined during six months at different sequences of regular effluent and overflow treatment conditions. TOC, DOC and nutrients, appearing in high concentration in combined sewer overflow, were effectively removed, and metformin and caffeine micropollutants showed >99% removal. Residues from this combined sewer treatment that were sorbed on filter material or stored in pore water were washed out directly after treatment when STP effluent infiltration was initiated. This effect declined within 20 h after combined sewer overflow treatment. Dry periods of 18 h between combined sewer and sewage treatment plant effluent feeding counteracted the wash out effects. The highest removal efficiency was found in the beginning of the feeding time of 28 h, indicating that shorter feeding cycles enhance the overall efficiency of the RSF. Finally, the results show that a single RSF system can successfully reduce emissions of TOC, DOC, nutrients and micropollutants to surface waters from two different emission pathways, i.e. from regular treated effluents and storm related sewer overflows. In conclusion, the dual usage of RSF is a promising approach and ready for upscaling and implementation.