Publications

Simulation of Sentinel-3 images by four stream surface atmosphere radiative transfer modeling in the optical and thermal domains

Verhoef, W.; Bach, H.

Summary

Simulation of future satellite images can be applied in order to validate the general mission concept and to test the performance of advanced multi-sensor algorithms for the retrieval of surface parameters. This paper describes the radiative transfer modeling part of a so-called Land Scene Generator (LSG) that was developed to simulate images of the sensors OLCI (Ocean and Land Colour Instrument) and SLSTR (Sea and Land Surface Temperature Radiometer) on board of the Sentinel-3 mission. Features of this mission are its wide spectral coverage (optical and thermal domains) and its wide imaging swath, which imposes particular requirements on the simulator in dealing with atmospheric effects over both spectral domains and with angular effects caused by variations in surface bi-directional reflectance distribution function (BRDF) and atmospheric scattering. In the simulator, radiative transfer models for the combination vegetation-soil and for water are coupled to atmospheric parameters derived from MODTRAN runs in order to calculate top-of-atmosphere radiances. For this, four-stream radiative transfer theory is applied to allow simulation of BRDF effects, topography effects, adjacency effects, as well as its uniform application over the optical and thermal spectral domains.